Linear Algebra
 [KOMS120301] - 2023/2024

7.1 - Vectors in R^{n}

Dewi Sintiari

Computer Science Study Program
Universitas Pendidikan Ganesha
Week 7 (September 2023)

Learning objectives

After this lecture, you should be able to:

1. explain the definition of vectors in general;
2. explain the definition of vectors in Linear Algebra;
3. explain some operations on vectors, such as:

- vector addition and scalar multiplication;
- linear combination;

Part 1: Vectors (in general)

What is a vector?

Three ways of defining vectors:

1. Physics perspective
2. Mathematics perspective
3. CS perspective

What is a vector (in physics)?

Vectors are arrows pointing in space. They are quantities that possess both magnitude and direction; e.g. force, velocity.
Usually, denoted by a letter typed in bold, or with an arrow above it; e.g. \vec{a}. It is often drawn as an arrow having appropriate length and direction .

What defined a vector (in physics)?

- Length (magnitude)
- Direction

Two vectors are the same if they have the same length and direction

Example of vector in Physics

The velocity of a car is $60 \mathrm{~km} / \mathrm{h}$, and it goes to 30° in the north-east direction.

Vectors in 3D-space (in physics)

What is a vector (in CS)?

Example

A teacher needs to check their students health, by measuring their weight and height. How should the data be represented?

$\left[\begin{array}{c}40 \mathrm{~kg} \\ 150 \mathrm{~cm}\end{array}\right] \quad$ This is a 2D vector
$\left[\begin{array}{c}40 \mathrm{~kg} \\ 150 \mathrm{~cm} \\ 14 \text { years }\end{array}\right] \quad$ This is a 3D vector

In CS, a vector can be considered as a list (tuples) of numbers

What is a vector (in Mathematics)?

The mathematical concept of vectors are combination of the two:

- Vectors can be viewed geometrically or algebraically;
- We can perform operations such as addition, multiplication, substraction, etc.

Back to high school: simple operations in vectors you

 might have learned in physics1. Vectors addition
2. Scalar multiplication

(a) Vector Addition

(b) Scalar Multiplication

Vectors addition $(\mathbf{u}+\mathbf{v})$

- Geometrically, the resultant $\mathbf{u}+\mathbf{v}$ is obtained by the parallelogram law
- If \mathbf{u} has endpoints (a, b, c) and \mathbf{v} has endpoints $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$, then $\mathbf{u}+\mathbf{v}$ has endpoints ($a+a^{\prime}, b+b^{\prime}, c+c^{\prime}$)

Scalar multiplication (ku)

- Let $k \in \mathbb{R}$, then $k \mathbf{u}$ is the vector having magnitude k times the magnitude of u, and same direction when $k>0$ or the opposite direction when $k<0$.
- If \mathbf{u} has endpoints (a, b, c), then the endpoints of $k \mathbf{u}$ are ($k a, k b, k c$).

Part 2: Vectors in Linear Algebra

Vectors in Linear Algebra

Geometrically:

- Vectors are arrows originated at the origin O
- Notations: $\mathbf{u}, \mathbf{v}, \mathbf{w}, \ldots$ or $\vec{u}, \vec{v}, \vec{w}, \ldots$

Vectors in Linear Algebra

In 2D

Vectors are arrows originated at the origin O.

It is not the same as a point.
Vector \vec{u} is equivalent to $\overrightarrow{O P}$

The number a and b in $\left[\begin{array}{l}a \\ b\end{array}\right]$ indicate how far the vector \vec{u} moves along the x-axis and the y-axis resp.
The positive (resp. negative) sign of a or b indicates that it moves toward the right or up (resp. left or down).

In 3D, it is similar, but we consider three axes (x, y, and z).

What is a vector space?

- An ordered n-tuple is a sequence of real numbers: $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ (or, can be seen as a vector).
- An n-space is a set of all n-tuples of real numbers. Usually denoted as \mathbb{R}^{n}. For $n=1, \mathbb{R}^{1} \equiv \mathbb{R}$.
- This space is where vectors are defined
- The space is also called Euclidean space.

Example:

Vector in \mathbb{R}^{2}
Vector in \mathbb{R}^{3}

(c) Dewi Sintiari/CS Undiksha

Example

1. $\vec{u}=(3,6) \rightarrow$ vector in \mathbb{R}^{2}
2. $\vec{v}=(2,-4,5) \rightarrow$ vector in \mathbb{R}^{4}
3. $\vec{w}=(-4,2,-3,1) \rightarrow$ vector in \mathbb{R}^{4}
4. $\vec{c}=(r, g, b) \rightarrow$ vector in RGB-model

We will go back to the vector space \mathbb{R}^{n}.

For now, let us look at \mathbb{R}^{2} and \mathbb{R}^{3}.

(C) Dewi Sintiari/CS Undiksha

Part : Vector operations in R_{2} and R_{3}

Vectors addition (geometric representation)

Let us given the following vectors:

Which one defines $\vec{u}+\vec{v}$?

Vectors addition (geometric representation)

A vector defines a certain movement in space (how far, which direction).

- $\vec{u}=\left[\begin{array}{ll}a_{1} & a_{2}\end{array}\right] \rightarrow$ moving a_{1} steps in the x-axis direction, and a_{2} steps in the y-axis direction.
- $\vec{v}=\left[b_{1} b_{2}\right] \rightarrow$ moving b_{1} steps in the x-axis direction, and b_{2} steps in the y-axis direction.

So $\vec{u}+\vec{v}$ can be seen as moving along vector \vec{u} continued by moving along vector \vec{v}, i.e. moving $a_{1}+b_{1}$ steps in the x-axis direction, and $a_{2}+b_{2}$ steps in the y-axis direction.

$$
\vec{u}+\vec{v}=\left[\begin{array}{ll}
\left(a_{1}+b_{1}\right) & \left(a_{2}+b_{2}\right)
\end{array}\right]
$$

Scalar multiplication (geometric representation)

Multiplying a vector by a scalar can be seen as "scaling" a vector (stretching, and sometimes reversing the direction of a vector).

Exercise

Give two vectors at \mathbb{R}^{2}.

- Calculate the sum of the two vectors.
- Geometrically draw the two vectors and their resultant on the Cartesian plane.
- Multiply one vector by a scalar \mathbb{R}^{+}and the other by a scalar \mathbb{R}^{-}.
- Draw both result vectors on the \mathbb{R}^{2} field.

Part : Spatial Vectors

Vectors in \mathbb{R}^{3}

Vectors in \mathbb{R}^{3} are called spatial vectors, appear in many applications, especially in physics.
Special notation:

- $\mathbf{i}=[1,0,0]$ denotes the unit vector in the x-direction
- $\mathbf{j}=[0,1,0]$ denotes the unit vector in the y-direction
- $\mathbf{k}=[0,0,1]$ denotes the unit vector in the z-direction

Any vector $\mathbf{u}=[a, b, c]$ in \mathbb{R}^{3} can be expressed uniquely in the form:

$$
\mathbf{u}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}
$$

Vectors in \mathbb{R}^{3}

Important! \mathbf{i}, \mathbf{j}, and \mathbf{k} are vectors, and they are unit vectors.
Furthermore:

$$
\mathbf{i} \cdot \mathbf{i}=1, \mathbf{j} \cdot \mathbf{j}=1, \mathbf{k} \cdot \mathbf{k}=1 \quad \text { and } \quad \mathbf{i} \cdot \mathbf{j}=0, \mathbf{i} \cdot \mathbf{k}=0, \mathbf{j} \cdot \mathbf{k}=0
$$

The right equality shows that \mathbf{i}, \mathbf{j}, and \mathbf{k} are orthogonal one to each other.

All vector operations still hold:
For $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \mathbf{k}$, and $\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}$, then:

- $\mathbf{u}+\mathbf{v}=\left(u_{1}+v_{1}\right) \mathbf{i}+\left(u_{2}+v_{2}\right) \mathbf{j}+\left(u_{3}+v_{3}\right) \mathbf{k}$
- $k \mathbf{u}=k u_{1} \mathbf{i}+k u_{2} \mathbf{j}+k u_{3} \mathbf{k}$ for any $k \in \mathbb{R}$
- $\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$
- $\|\mathbf{u}\|=\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}$

Example

Let $\mathbf{u}=3 \mathbf{i}+5 \mathbf{j}-2 \mathbf{k}$ and $\mathbf{v}=4 \mathbf{i}-8 \mathbf{j}+5 \mathbf{k}$. Find $3 \mathbf{u}-2 \mathbf{v}$.

$$
\begin{aligned}
3 \mathbf{u}-2 \mathbf{v} & =3(3 \mathbf{i}+5 \mathbf{j}-2 \mathbf{k})-2(4 \mathbf{i}-8 \mathbf{j}+5 \mathbf{k}) \\
& =(9 \mathbf{i}+15 \mathbf{j}-6 \mathbf{k})+(-8 \mathbf{i}+16 \mathbf{j}-10 \mathbf{k}) \\
& =1 \mathbf{i}+31 \mathbf{j}-16 \mathbf{k}
\end{aligned}
$$

to be continued...

(C) Dewi Sintiari/CS Undiksha

