Linear Algebra [KOMS120301] - 2023/2024

7.1 - Vectors in R^n

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 7 (September 2023)

1 / 29 © Dewi Sintiari/CS Undiksha

Learning objectives

After this lecture, you should be able to:

- 1. explain the definition of vectors in general;
- 2. explain the definition of vectors in Linear Algebra;
- 3. explain some operations on vectors, such as:
 - vector addition and scalar multiplication;
 - linear combination;

2 / 29 © Dewi Sintiari/CS Undiksha

Part 1: **Vectors** (*in general*)

3 / 29 © Dewi Sintiari/CS Undiksha

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

What is a vector?

Three ways of defining vectors:

- 1. Physics perspective
- 2. Mathematics perspective
- 3. CS perspective

What is a vector (in physics)?

Vectors are arrows pointing in space. They are quantities that possess both *magnitude* and *direction*; e.g. force, velocity.

Usually, denoted by a letter typed in bold, or with an arrow above it; e.g. \vec{a} . It is often drawn as an arrow having appropriate length and direction .

What defined a vector (in physics)?

- Length (magnitude)
- Direction

Example of vector in Physics

The velocity of a car is 60 km/h, and it goes to 30° in the north-east direction.

7 / 29 © Dewi Sintiari/CS Undiksha

イロト イヨト イヨト

3

Vectors in 3D-space (in physics)

・ロト ・四ト ・ヨト ・ヨト

What is a vector (in CS)?

Example

A teacher needs to check their students health, by measuring their *weight* and *height*. How should the data be represented?

$$\begin{bmatrix} 40 & kg \\ 150 & cm \end{bmatrix}$$
 This is a 2D vector
$$\begin{bmatrix} 40 & kg \\ 150 & cm \\ 14 & years \end{bmatrix}$$
 This is a 3D vector

In CS, a vector can be considered as a list (tuples) of numbers

9 / 29 © Dewi Sintiari/CS Undiksha

What is a vector (in Mathematics)?

The mathematical concept of vectors are combination of the two:

- Vectors can be viewed geometrically or algebraically;
- We can perform operations such as addition, multiplication, substraction, etc.

10 / 29 © Dewi Sintiari/CS Undiksha

イロト 不得 トイヨト イヨト 二日

Back to high school: *simple operations in vectors you might have learned in physics*

- 1. Vectors addition
- 2. Scalar multiplication

Vectors addition $(\mathbf{u} + \mathbf{v})$

- Geometrically, the *resultant* u + v is obtained by the parallelogram law
- If u has endpoints (a, b, c) and v has endpoints (a', b', c'), then u + v has endpoints (a + a', b + b', c + c')

ヘロト ヘヨト ヘヨト

Scalar multiplication $(k\mathbf{u})$

- Let k ∈ ℝ, then ku is the vector having magnitude k times the magnitude of u, and same direction when k > 0 or the opposite direction when k < 0.
- If **u** has endpoints (*a*, *b*, *c*), then the endpoints of *k***u** are (*ka*, *kb*, *kc*).

13 / 29 © Dewi Sintiari/CS Undiksha

・ロト ・ 同ト ・ ヨト ・ ヨト

Part 2: Vectors in Linear Algebra

Vectors in Linear Algebra

Geometrically:

- Vectors are arrows originated at the origin O
- Notations: $\mathbf{u}, \mathbf{v}, \mathbf{w}, \ldots$ or $\vec{u}, \vec{v}, \vec{w}, \ldots$

15 / 29 © Dewi Sintiari/CS Undiksha

イロト 不得 トイヨト イヨト 二日

Vectors in Linear Algebra

Vectors are arrows originated at the origin *O*.

It is not the same as a point. Vector \vec{u} is equivalent to \overrightarrow{OP}

The number *a* and *b* in $\begin{bmatrix} a \\ b \end{bmatrix}$ indicate how far the vector \vec{u} moves along the *x*-axis and the *y*-axis resp.

The positive (resp. negative) sign of a or b indicates that it moves toward the right or up (resp. left or down).

In 3D, it is similar, but we consider three axes (x, y, and z).

What is a vector space?

• An ordered *n*-tuple is a sequence of *real numbers*:

 (a_1, a_2, \ldots, a_n) (or, can be seen as a vector).

- An *n*-space is a set of all *n*-tuples of real numbers. Usually denoted as ℝⁿ. For n = 1, ℝ¹ ≡ ℝ.
 - This space is where vectors are defined
- The space is also called Euclidean space.

Example:

Vector in \mathbb{R}^2

17 / 29

Example

1.
$$\vec{u} = (3,6) \rightarrow \text{vector in } \mathbb{R}^2$$

2. $\vec{v} = (2,-4,5) \rightarrow \text{vector in } \mathbb{R}^4$
3. $\vec{w} = (-4,2,-3,1) \rightarrow \text{vector in } \mathbb{R}^4$
4. $\vec{c} = (r,g,b) \rightarrow \text{vector in } \mathsf{RGB}\text{-model}$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶

æ

We will go back to the vector space \mathbb{R}^n .

For now, let us look at \mathbb{R}^2 and \mathbb{R}^3 .

19 / 29 © Dewi Sintiari/CS Undiksha

イロト イボト イヨト イヨト

э

Part : Vector operations in R_2 and R_3

20 / 29 © Dewi Sintiari/CS Undiksha

Vectors addition (geometric representation)

Let us given the following vectors:

Which one defines $\vec{u} + \vec{v}$?

21 / 29 © Dewi Sintiari/CS Undiksha

Vectors addition (geometric representation)

A vector defines a certain movement in space (how far, which direction).

- $\vec{u} = [a_1 \ a_2] \rightarrow \text{moving } a_1 \text{ steps in the } x\text{-axis direction, and } a_2 \text{ steps in the } y\text{-axis direction.}$
- $\vec{v} = [b_1 \ b_2] \rightarrow \text{moving } b_1 \text{ steps in the } x\text{-axis direction, and } b_2 \text{ steps in the } y\text{-axis direction.}$

So $\vec{u} + \vec{v}$ can be seen as moving along vector \vec{u} continued by moving along vector \vec{v} , i.e. moving $a_1 + b_1$ steps in the *x*-axis direction, and $a_2 + b_2$ steps in the *y*-axis direction.

$$\vec{u} + \vec{v} = [(a_1 + b_1) \ (a_2 + b_2)]$$

22 / 29 © Dewi Sintiari/CS Undiksha

イロト イポト イヨト イヨト

Scalar multiplication (geometric representation)

Multiplying a vector by a scalar can be seen as "scaling" a vector (stretching, and sometimes reversing the direction of a vector).

23 / 29 © Dewi Sintiari/CS Undiksha

イロト イヨト イヨト

Exercise

Give two vectors at \mathbb{R}^2 .

- Calculate the sum of the two vectors.
- Geometrically draw the two vectors and their resultant on the Cartesian plane.
- Multiply one vector by a scalar \mathbb{R}^+ and the other by a scalar $\mathbb{R}^-.$
- Draw both result vectors on the \mathbb{R}^2 field.

24 / 29 © Dewi Sintiari/CS Undiksha

Part : Spatial Vectors

25 / 29 © Dewi Sintiari/CS Undiksha

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Vectors in \mathbb{R}^3

Vectors in \mathbb{R}^3 are called spatial vectors, appear in many applications, especially in physics.

Special notation:

- $\mathbf{i} = [1, 0, 0]$ denotes the unit vector in the *x*-direction
- $\mathbf{j} = [0, 1, 0]$ denotes the unit vector in the *y*-direction
- $\mathbf{k} = [0, 0, 1]$ denotes the unit vector in the *z*-direction

Any vector $\mathbf{u} = [a, b, c]$ in \mathbb{R}^3 can be expressed uniquely in the form:

$$\mathbf{u} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Vectors in \mathbb{R}^3

Important! i, j, and k are vectors, and they are unit vectors. Furthermore:

 $\mathbf{i} \cdot \mathbf{i} = 1, \ \mathbf{j} \cdot \mathbf{j} = 1, \ \mathbf{k} \cdot \mathbf{k} = 1$ and $\mathbf{i} \cdot \mathbf{j} = 0, \ \mathbf{i} \cdot \mathbf{k} = 0, \ \mathbf{j} \cdot \mathbf{k} = 0$

The right equality shows that \mathbf{i} , \mathbf{j} , and \mathbf{k} are orthogonal one to each other.

All vector operations still hold:

For
$$\mathbf{u} = u_1\mathbf{i} + u_2\mathbf{j} + u_3\mathbf{k}$$
, and $\mathbf{v} = v_1\mathbf{i} + v_2\mathbf{j} + v_3\mathbf{k}$, then:

•
$$\mathbf{u} + \mathbf{v} = (u_1 + v_1)\mathbf{i} + (u_2 + v_2)\mathbf{j} + (u_3 + v_3)\mathbf{k}$$

•
$$k\mathbf{u} = ku_1\mathbf{i} + ku_2\mathbf{j} + ku_3\mathbf{k}$$
 for any $k \in \mathbb{R}$

•
$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$$

•
$$\|\mathbf{u}\| = \sqrt{u_1^2 + u_2^2 + u_3^2}$$

27 / 29 © Dewi Sintiari/CS Undiksha

Example

Let $\mathbf{u} = 3\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}$ and $\mathbf{v} = 4\mathbf{i} - 8\mathbf{j} + 5\mathbf{k}$. Find $3\mathbf{u} - 2\mathbf{v}$.

$$3u - 2v = 3(3i + 5j - 2k) - 2(4i - 8j + 5k)$$

= (9i + 15j - 6k) + (-8i + 16j - 10k)
= 1i + 31j - 16k

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

to be continued...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ